[Co-authored with Walter Stover]
Artificial Intelligence (AI) systems have grown more prominent in both their use and their unintended effects. Just last month, LAPD announced that they would end their use of a predicting policing system known as PredPol, which had sustained criticism for reinforcing policing practices that disproportionately affect minorities. Such incidents of machine learning algorithms producing unintentionally biased outcomes have prompted calls for ‘ethical AI’. However, this approach focuses on technical fixes to AI, and ignores two crucial components of undesired outcomes: the subjectivity of data fed into and out of AI systems, and the interaction between actors who must interpret that data. When considering regulation on artificial intelligence, policymakers, companies, and other organizations using AI should therefore focus less on the algorithms and more on data and how it flows between actors to reduce risk of misdiagnosing AI systems. To be sure, applying an ethical AI framework is better than discounting ethics all together, but an approach that focuses on the interaction between human and data processes is a better foundation for AI policy.
The fundamental mistake underlying the ethical AI framework is that it treats biased outcomes as a purely technical problem. If this was true, then fixing the algorithm is an effective solution, because the outcome is purely defined by the tools applied. In the case of landing a man on the moon, for instance, we can tweak the telemetry of the rocket with well-defined physical principles until the man is on the moon. In the case of biased social outcomes, the problem is not well-defined. Who decides what an appropriate level of policing is for minorities? What sentence lengths are appropriate for which groups of individuals? What is an acceptable level of bias? An AI is simply a tool that transforms input data into output data, but it’s people that give meaning to data at both steps in context of their understanding of these questions and what appropriate measures of such outcomes are.
Continue reading →